

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Synthesis and biological evaluation of new 3,5-di(trifluoromethyl)-1,2,4-triazolesulfonylurea and thiourea derivatives as antidiabetic and antimicrobial agents

Hassan M. Faidallah^{a,*}, Khalid A. Khan^a, Abdullah M. Asiri^{a,b}

^a Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia ^b Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

ARTICLE INFO

Article history: Received 19 March 2011 Received in revised form 10 June 2011 Accepted 16 June 2011 Available online 23 June 2011

Keywords: Fluorinated 1,2,4-triazole Benzenesulfonylureas Thioureas Thiazolidines Antidiabetic and antimicrobial activity

ABSTRACT

Fluorinated 1,2,4-triazoles **3** and benzenesulfonyl urea and thiourea derivatives as well as their cyclic sulfonylthioureas **4–10** were prepared as antimicrobial agents. The chemistry involves the condensation of sulfanilamide derivatives **1** with trifluoroacetic anhydride to give *N*-di(trifluoroacetyl)sulfonamides **2** which upon reaction with hydrazine hydrate afforded the corresponding triazole derivatives **3**. Reaction of triazole derivative **3a** with isocyanates and isothiocyanates gave the corresponding ureas **4** and thioureas **5**. Cyclization of thiourea derivatives with ethyl bromoacetate, 1,2-diiodoethane, diethyl oxalate and α -bromoacetophenone derivatives yielded the corresponding 4-oxothiazolidines **7**, thiazolidines **8**, 4,5-dioxothiazolidines **9** and thiazolines **10**. Preliminary biological screening of the prepared compounds revealed significant antimicrobial and mild antidiabetic activities.

© 2011 Elsevier B.V. All rights reserved.

FLUURINI