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A Fast Algorithm to Solve The Poisson
Equation in The Complex Plane
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Jeddah, Saudi Arabia

AsstracT. Fast algorithm for the accurate evaluation of some integral
operator that arise in the context of solving certain partial differential
equations within the unit circle in the complex plane are presented. It
is based on some recursive relations in the Fourier space and the FFT
(Fast Fourier Transform), and have theoretical computational com-
plexity of the order O(log N) per point, where N 2 is the total number
of grid points.

1. Introduction

Many problems in applied mathematics require the evaluation of the singular in-
tegral transform

1) =1 [ g0y HON0G1 L - 0 |, § =E+in (1.1)

of a complex valued function % defined on B(0, 1) = {o:| o|< 1}, for example[z],
the general solution of the Poisson equation

Av=h (1.2)
in the unit circle is given by
v(6) = —— £(c) (1.3)
2r

The method presented takes into account the convolution nature of this in-
tegral and some of the properties of such convolution integrals in Fourier space,
the set of all complex continuous functions defined on [0, 211][1]. This process
leads to a recursive algorithm in Fourier space that divides the entire domain
into a collection of circular regions and expands the integral in Fourier series
with radius dependent Fourier coefficients. A set of exact recursive relations in-
volve appropriate scaling of one-dimensional integrals in circular regions,
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which significantly improves the computational complexity. The desired in-
tegrals at all N? grid points are then easily obtained from the Fourier co-
efficients by the FFT (fast Fourier transform). The process of evaluation of
these integrals has thus been optimized in this paper giving a net operation
count of the O(In N) per point. This algorithm has the added advantage of work-
ing in place, meaning that no additional memory storage is required beyond that
of the initial data.

This paper is laid out as follows. In section 2 we present the mathematical
foundation of fast algorithm for rapid evaluation of LA(0) within the unit circle.
In section 3, the formal description of the fast algorithm is presented. Finally,
we summarize and conclude in section 4.

2. Evaluation of L-Operator
In this section we develop the theory needed to construct an efficient al-
gorithm for evaluation of the L-operator.

Theorem 1.2. If Lh(0) exists in the unit disk, and /(o = 7¢'*)= Y 4,(r)¢"%,
Jl——oc0

then the n'™ Fourier Coefficients Lh(o = re'%) is given for o # 0 by
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where oo = re®)= Y 1,()e™.

J]I=—0c0
Proof. For o+ 0 we have
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where O(r, &) = 2ij02” ¢ log |{— ol do, @, = {C: (| <r— e}, and Q, =
T

{€:r+ e <|{| <1}, (see Lemma A.4).

If we set { = peie, we get

77
[ 0] Fompe?) ﬁpd@dp, n< -,
L+l = 5J 1 Hpe®)og(pe®)pdbup, n=0, (2.4)
1 2m 0 7
J.rj.o —/M(pe Wﬂd@dp, n=1,
" _
%jgp(l ”)én(p)dpv n< -1,

11 2mi ¢ 1
=1 21] = plogply(p)dp+ = [ ,pty(p)p, =0
(2.5)

| —”—;”J P17, (p)dp, n>1,
where Hj(p) is the constant term in the Fourier Series Coefficients of 9h(pei9).
Theorem 2.2. 1f 6= 0, then
LHO)= [ ] oy HOV0QIE | dedn =27 lim [ plo(p)logpap.  (2.6)
Proof. Since
ZHO) = [ [0 1 s100y MON0QIS | dan = [ L[ ipe® Y10 pe’” | patbdp
= [Lplogp[ " Mpd®)dodp 2.7)

=21[_ ply(p)log pap.
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Therefore

.[ Jlg(oyl) M&)og | |d§dn = Zﬂ-elino'[el p/n(p)logpdp.

(2.8)

If we denote the n'™ Fourier Series Coefficient of Lh(o= rei"‘) by C,(r) then

we get the following corollaries.

Corollary 1.2. 1t follows directly from (2.1) that
C,(0)=0 for n<I.
C,(1)=0 for n=>0.

Corollary 2.2. Forr;>r, if we define

Yy e
=L (7" (p)a,
n 7
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v 7

then by mathematical induction it follows that
Cn(rj) = (_)Cﬂ(};) + 651/7 S _1’
}/}.
Colr7) = Cf + Gyl

G =)+, n=1,
J

n<—l,;

n=0

n>1.

(2.9)
(2.10)

2.11)

(2.12)

(2.13)

(2.14)

Corollary 2.3. Let0=r;<r,<..<r),= 1, then by mathematical induction

it follows that

[/

Z (Q)”ijl", for < -1 and /=2,3,..., M;

=2 77

M=1

C,(m)= Z Cf)"“, for »=0 and /=2,3,.... M —1;

=/

M1

L =7/ 7

D 2y for nzland /= 2,3,..., M1

(2.15)
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3. The Fast Algorithm

If we discretized the disk by using M x N lattice points with M equidistant
points in the radial direction and N equidistant points in the circular direction,
then we can construct the fast algorithm based on the theory of section 2. The
following is a formal description of the algorithm.

Algorithm

Input. The integer M, the number of points in the radial direction; N, the
number of points in the circular direction; A(oc = rlezm}‘/N), le [1,M] and ke

[1, N].
Output. Lh (o = re’™ Ny | e [1, M] and k € [1, N]. Compute h(r;)) for s €
-0, O].

Step 3. From h(o = re2™kIN), [ € [1, M] and k € [1, N]. Compute H(r)).

Step 4. Forie[2, M—1]and s €[- O, O]. Compute Cé’iﬂ as follows

[ TS el (1
N selo-1)
i =S 2x] " plog(p) 2 dy(p)+ pty (P} p. =0,
el —
_%J r,-l+ P (), se[ld].

Step 5. Compute C(r)) for s €[-Q, O] and [ €[1, M] as follows
set C(ry) =0 for s €[0, O]
do s=0,1,...,0

Co(r)= o+ (LY Cy)

711
enddo
enddo
Set C(r)) =0 for s e[-Q, 1]
dos=-0,..,—1

do /=2,3,.,. M

Co(m)= CM + (%)Sq(rz_l)
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enddo
enddo
Step 6. Compute Cjy(r) as follows

. 1
Co(4) =2z lim [ _ py(p)1og(p)dp
e—0
Step 7. Output

. 0 ‘
Lo = ™I VY= C ()Y for /e (1, M] and ke[, M].
5=—0

Stop
Remark 3.1. N must be a power of two.

Remark 3.2. We can use Laguerre polynomials to approximate the integral
in step 6.

Conclusions

The present work develops a fast algorithm to evaluate the singular integral
operator L in the interior of a unit disk in the complex plane. It is based on com-
putation of the integral from its Fourier coefficients. The recursive relations
satisfied by these Fourier coefficients are derived, which are at the heart of the
algorithm. The speed up provided by the algorithm is dramatic even for a mod-
erate number of nods in the domain. In actual implementation, the error will
arise from finite truncation of Fourier series and approximate evaluation of the
one dimensional integral.
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Appendix
Lemma A.1. 1f {+#0., then
a
— -0l
49 __ 1 (A1)
[{-o| 2(f-0)

Proof. Let{=C+inand o=x iy, then
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Lemma A.2.
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also
1 :L( 1 )
2(¢-0) 20 1_(2)
¢
Z( <) 1S1>1o]
17—0
_Ezg(,ﬁl) IC]>]o]
Lemma A.3.
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Lemma A.4. 1f 6 = re'® then
‘ 2_25_ —ma
log |& —re™® |={m=t <"
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n=l ZC

no

ICl<lo|

IS1<lo]

seeLemmaA.l)

ICl<lol;

|£]>]o]| (seeLemmaA 2)

[Zl<lol;

IZ1>lo].

ICl<lo|

» 1E1>1o]

(A.4)

(A.5)

(A.6)

(A.7)
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Proof: We have from Lemma A.3,

[ 1 C”+l
— , <|O
| o ;;::1 2(7+1) rn+lg/(n+l)(x lCl lo|
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42 Daoud Mashat

blis Hlodew 5915
ﬂﬂlwdw/wbcrfw’wccungﬂw
L3 gl ol Ll — 5

LhalsSs (350 2304 Af g o a5 31 il o5 izl
s 8 s s A8 5 AL Ladl YLl Gany Jo 5 el
sl E1,5 5 &) S BNl jamy e daas e s e s

N YOS PP (W





